FRIENDz

FAILURE IS THE SIGN OF SUCCESS!!

Connect CAN Protocol with 8051 Atmel

The SPI module is available with a number of the 8051 compliant MCUs. The mikroC PRO for 8051 provides a library (driver) for working with mikroElektronika's CANSPI Add-on boards (with MCP2515 or MCP2510) via SPI interface.
The CAN is a very robust protocol that has error detection and signalization, selfchecking and fault confinement. Faulty CAN data and remote frames are re-transmitted automatically, similar to the Ethernet.
Data transfer rates depend on distance. For example, 1 Mbit/s can be achieved at network lengths below 40m while 250 Kbit/s can be achieved at network lengths below 250m. The greater distance the lower maximum bitrate that can be achieved. The lowest bitrate defined by the standard is 200Kbit/s. Cables used are shielded twisted pairs.
CAN supports two message formats:
  • Standard format, with 11 identifier bits and
  • Extended format, with 29 identifier bits
Notes:
  • Consult the CAN standard about CAN bus termination resistance.
  • An effective CANSPI communication speed depends on SPI and certainly is slower than “real” CAN.
  • CANSPI module refers to mikroElektronika's CANSPI Add-on board connected to SPI module of MCU.

External dependencies of CANSPI Library

The following variables must be defined in all projects using CANSPI Library: Description : Example :
extern sfr bdata sbit CanSpi_CS; Chip Select line. sbit CanSpi_CS at P1_0_bit;
extern sfr bdata sbit CanSpi_Rst; Reset line. sbit CanSpi_Rst at P1_2_bit;

Library Routines

  • CANSPISetOperationMode
  • CANSPIGetOperationMode
  • CANSPIInitialize
  • CANSPISetBaudRate
  • CANSPISetMask
  • CANSPISetFilter
  • CANSPIread
  • CANSPIWrite
The following routines are for an internal use by the library only:
  • RegsToCANSPIID
  • CANSPIIDToRegs
Be sure to check CANSPI constants necessary for using some of the functions.

CANSPISetOperationMode

Prototype void CANSPISetOperationMode(char mode, char WAIT);
Returns Nothing.
Description Sets the CANSPI module to requested mode.
Parameters :
  • mode: CANSPI module operation mode. Valid values: CANSPI_OP_MODE constants (see CANSPI constants).
  • WAIT: CANSPI mode switching verification request. If WAIT == 0, the call is non-blocking. The function does not verify if the CANSPI module is switched to requested mode or not. Caller must use CANSPIGetOperationMode to verify correct operation mode before performing mode specific operation. If WAIT != 0, the call is blocking – the function won’t “return” until the requested mode is set.
Requires The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or similar hardware. See connection example at the bottom of this page.
Example
// set the CANSPI module into configuration mode (wait inside CANSPISetOperationMode until this mode is set)
CANSPISetOperationMode(_CANSPI_MODE_CONFIG, 0xFF);

CANSPIGetOperationMode

Prototype char CANSPIGetOperationMode();
Returns Current operation mode.
Description The function returns current operation mode of the CANSPI module. Check CANSPI_OP_MODE constants  or device datasheet for operation mode codes.
Requires The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or similar hardware. See connection example at the bottom of this page.
Example
// check whether the CANSPI module is in Normal mode and if it is do something.
if (CANSPIGetOperationMode() == _CANSPI_MODE_NORMAL) {
  ...
}

CANSPIInitialize

Prototype void CANSPIInitialize( char SJW, char BRP, char PHSEG1, char PHSEG2, char PROPSEG, char CANSPI_CONFIG_FLAGS);
Returns Nothing.
Description Initializes the CANSPI module.
Stand-Alone CAN controller in the CANSPI module is set to:
  • Disable CAN capture
  • Continue CAN operation in Idle mode
  • Do not abort pending transmissions
  • Fcan clock : 4*Tcy (Fosc)
  • Baud rate is set according to given parameters
  • CAN mode : Normal
  • Filter and mask registers IDs are set to zero
  • Filter and mask message frame type is set according to CANSPI_CONFIG_FLAGS value

SAM, SEG2PHTS, WAKFIL and DBEN bits are set according to CAN_CONFIG_FLAGS value.
Parameters:
  • SJW as defined in CAN controller's datasheet
  • BRP as defined in CAN controller's datasheet
  • PHSEG1 as defined in CAN controller's datasheet
  • PHSEG2 as defined in CAN controller's datasheet
  • PROPSEG as defined in CAN controller's datasheet
  • CANSPI_CONFIG_FLAGS is formed from predefined constants
Requires CanSpi_CS and CanSpi_Rst variables must be defined before using this function.
The CANSPI routines are supported only by MCUs with the SPI module.
The SPI module needs to be initialized. See the SPIx_Init and SPIx_Init_Advanced routines.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or similar hardware. See connection example at the bottom of this page.
Example
// CANSPI module connections
sbit CanSpi_CS  at P1_0_bit;
sbit CanSpi_Rst at P1_2_bit;
// End CANSPI module connections

// initialize the CANSPI module with the appropriate baud rate and message acceptance flags along with the sampling rules
char CanSpi_Init_Flags;
...  
CanSpi_Init_Flags = _CANSPI_CONFIG_SAMPLE_THRICE &  // form value to be used
                 _CANSPI_CONFIG_PHSEG2_PRG_ON &  // with CANSPIInitialize
                 _CANSPI_CONFIG_XTD_MSG &
                 _CANSPI_CONFIG_DBL_BUFFER_ON &
                 _CANSPI_CONFIG_VALID_XTD_MSG;
...
SPI1_Init();                                // initialize SPI module
CANSPIInitialize(1,3,3,3,1,CanSpi_Init_Flags);  // initialize external CANSPI module

CANSPISetBaudRate

Prototype void CANSPISetBaudRate( char SJW, char BRP, char PHSEG1, char PHSEG2, char PROPSEG, char CANSPI_CONFIG_FLAGS);
Returns Nothing.
Description Sets the CANSPI module baud rate. Due to complexity of the CAN protocol, you can not simply force a bps value. Instead, use this function when the CANSPI module is in Config mode.
SAM, SEG2PHTS and WAKFIL bits are set according to CANSPI_CONFIG_FLAGS value. Refer to datasheet for details.
Parameters:
  • SJW as defined in CAN controller's datasheet
  • BRP as defined in CAN controller's datasheet
  • PHSEG1 as defined in CAN controller's datasheet
  • PHSEG2 as defined in CAN controller's datasheet
  • PROPSEG as defined in CAN controller's datasheet
  • CANSPI_CONFIG_FLAGS is formed from predefined constants
Requires The CANSPI module must be in Config mode, otherwise the function will be ignored.
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or similar hardware. See connection example at the bottom of this page.
Example
// set required baud rate and sampling rules
char canspi_config_flags;
...  
CANSPISetOperationMode(CANSPI_MODE_CONFIG,0xFF);              // set CONFIGURATION mode (CANSPI module mast be in config mode for baud rate settings)
canspi_config_flags = _CANSPI_CONFIG_SAMPLE_THRICE &
                   _CANSPI_CONFIG_PHSEG2_PRG_ON &
                   _CANSPI_CONFIG_STD_MSG       &
                   _CANSPI_CONFIG_DBL_BUFFER_ON &
                   _CANSPI_CONFIG_VALID_XTD_MSG &
                   _CANSPI_CONFIG_LINE_FILTER_OFF;
CANSPISetBaudRate(1, 1, 3, 3, 1, canspi_config_flags);

CANSPISetMask

Prototype void CANSPISetMask(char CANSPI_MASK, long val, char CANSPI_CONFIG_FLAGS);
Returns Nothing.
Description Configures mask for advanced filtering of messages. The parameter value is bit-adjusted to the appropriate mask registers.
Parameters:
  • CANSPI_MASK: CANSPI module mask number. Valid values: CANSPI_MASK constants 
  • val: mask register value
  • CANSPI_CONFIG_FLAGS: selects type of message to filter. Valid values:
    • _CANSPI_CONFIG_ALL_VALID_MSG,
    • _CANSPI_CONFIG_MATCH_MSG_TYPE & _CANSPI_CONFIG_STD_MSG,
    • _CANSPI_CONFIG_MATCH_MSG_TYPE & _CANSPI_CONFIG_XTD_MSG.
Requires The CANSPI module must be in Config mode, otherwise the function will be ignored.
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or similar hardware. See connection example at the bottom of this page.
Example
// set the appropriate filter mask and message type value
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,0xFF);              // set CONFIGURATION mode (CANSPI module must be in config mode for mask settings)

// Set all B1 mask bits to 1 (all filtered bits are relevant):
// Note that -1 is just a cheaper way to write 0xFFFFFFFF.
// Complement will do the trick and fill it up with ones.
CANSPISetMask(_CANSPI_MASK_B1, -1, _CANSPI_CONFIG_MATCH_MSG_TYPE & _CANSPI_CONFIG_XTD_MSG);

CANSPISetFilter

Prototype void CANSPISetFilter(char CANSPI_FILTER, long val, char CANSPI_CONFIG_FLAGS);
Returns Nothing.
Description Configures message filter. The parameter value is bit-adjusted to the appropriate filter registers.
Parameters:
  • CANSPI_FILTER: CANSPI module filter number. Valid values: CANSPI_FILTER constants 
  • val: filter register value
  • CANSPI_CONFIG_FLAGS: selects type of message to filter. Valid values:
    • _CANSPI_CONFIG_ALL_VALID_MSG,
    • _CANSPI_CONFIG_MATCH_MSG_TYPE & _CANSPI_CONFIG_STD_MSG,
    • _CANSPI_CONFIG_MATCH_MSG_TYPE & _CANSPI_CONFIG_XTD_MSG.
Requires The CANSPI module must be in Config mode, otherwise the function will be ignored.
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or similar hardware. See connection example at the bottom of this page.
Example
// set the appropriate filter value and message type
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,0xFF);                  // set CONFIGURATION mode (CANSPI module must be in config mode for filter settings)

/* Set id of filter B1_F1 to 3: */
CANSPISetFilter(_CANSPI_FILTER_B1_F1, 3, _CANSPI_CONFIG_XTD_MSG);

CANSPIRead

Prototype char CANSPIRead(long *id, char *rd_data, char *data_len, char *CANSPI_RX_MSG_FLAGS);
Returns
  • 0 if nothing is received
  • 0xFF if one of the Receive Buffers is full (message received)
Description If at least one full Receive Buffer is found, it will be processed in the following way:
  • Message ID is retrieved and stored to location provided by the id parameter
  • Message data is retrieved and stored to a buffer provided by the rd_data parameter
  • Message length is retrieved and stored to location provided by the data_len parameter
  • Message flags are retrieved and stored to location provided by the CANSPI_RX_MSG_FLAGS parameter
Parameters:
  • id: message identifier storage address
  • rd_data: data buffer (an array of bytes up to 8 bytes in length)
  • data_len: data length storage address.
  • CANSPI_RX_MSG_FLAGS: message flags storage address
Requires The CANSPI module must be in a mode in which receiving is possible.
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or similar hardware. See connection example at the bottom of this page.
Example
// check the CANSPI module for received messages. If any was received do something. 
char msg_rcvd, rx_flags, data_len;
char data[8];
long msg_id;
...
CANSPISetOperationMode(_CANSPI_MODE_NORMAL,0xFF);                  // set NORMAL mode (CANSPI module must be in mode in which receive is possible)
...
rx_flags = 0;                                                // clear message flags
if (msg_rcvd = CANSPIRead(msg_id, data, data_len, rx_flags)) {
  ...
}

CANSPIWrite

Prototype char CANSPIWrite(long id, char *wr_data, char data_len, char CANSPI_TX_MSG_FLAGS);
Returns
  • 0 if all Transmit Buffers are busy
  • 0xFF if at least one Transmit Buffer is available
Description If at least one empty Transmit Buffer is found, the function sends message in the queue for transmission.
Parameters:
  • id: CAN message identifier. Valid values: 11 or 29 bit values, depending on message type (standard or extended)
  • wr_data: data to be sent (an array of bytes up to 8 bytes in length)
  • data_len: data length. Valid values: 1 to 8
  • CANSPI_TX_MSG_FLAGS: message flags
Requires The CANSPI module must be in mode in which transmission is possible.
The CANSPI routines are supported only by MCUs with the SPI module.
MCU has to be properly connected to mikroElektronika's CANSPI Extra Board or similar hardware. See connection example at the bottom of this page.
Example
// send message extended CAN message with the appropriate ID and data
char tx_flags;
char data[8];
long msg_id;
...
CANSPISetOperationMode(_CANSPI_MODE_NORMAL,0xFF);                 // set NORMAL mode (CANSPI must be in mode in which transmission is possible)

tx_flags = _CANSPI_TX_PRIORITY_0 & _CANSPI_TX_XTD_FRAME;             // set message flags
CANSPIWrite(msg_id, data, 2, tx_flags);

CANSPI Constants

There is a number of constants predefined in the CANSPI library. You need to be familiar with them in order to be able to use the library effectively. Check the example at the end of the chapter.

CANSPI_OP_MODE

The CANSPI_OP_MODE constants define CANSPI operation mode. Function CANSPISetOperationMode expects one of these as it's argument:
const char
_CANSPI_MODE_BITS = 0xE0, // Use this to access opmode bits
_CANSPI_MODE_NORMAL = 0x00,
_CANSPI_MODE_SLEEP = 0x20,
_CANSPI_MODE_LISTEN = 0x60,
_CANSPI_MODE_LOOP = 0x40,
_CANSPI_MODE_CONFIG = 0x80;


CANSPI_CONFIG_FLAGS

The CANSPI_CONFIG_FLAGS constants define flags related to the CANSPI module configuration. The functions CANSPIInitialize, CANSPISetBaudRate, CANSPISetMask and CANSPISetFilter expect one of these (or a bitwise combination) as their argument:
const char
_CANSPI_CONFIG_DEFAULT = 0xFF, // 11111111
_CANSPI_CONFIG_PHSEG2_PRG_BIT = 0x01,
_CANSPI_CONFIG_PHSEG2_PRG_ON = 0xFF, // XXXXXXX1
_CANSPI_CONFIG_PHSEG2_PRG_OFF = 0xFE, // XXXXXXX0
_CANSPI_CONFIG_LINE_FILTER_BIT = 0x02,
_CANSPI_CONFIG_LINE_FILTER_ON = 0xFF, // XXXXXX1X
_CANSPI_CONFIG_LINE_FILTER_OFF = 0xFD, // XXXXXX0X
_CANSPI_CONFIG_SAMPLE_BIT = 0x04,
_CANSPI_CONFIG_SAMPLE_ONCE = 0xFF, // XXXXX1XX
_CANSPI_CONFIG_SAMPLE_THRICE = 0xFB, // XXXXX0XX
_CANSPI_CONFIG_MSG_TYPE_BIT = 0x08,
_CANSPI_CONFIG_STD_MSG = 0xFF, // XXXX1XXX
_CANSPI_CONFIG_XTD_MSG = 0xF7, // XXXX0XXX
_CANSPI_CONFIG_DBL_BUFFER_BIT = 0x10,
_CANSPI_CONFIG_DBL_BUFFER_ON = 0xFF, // XXX1XXXX
_CANSPI_CONFIG_DBL_BUFFER_OFF = 0xEF, // XXX0XXXX
_CANSPI_CONFIG_MSG_BITS = 0x60,
_CANSPI_CONFIG_ALL_MSG = 0xFF, // X11XXXXX
_CANSPI_CONFIG_VALID_XTD_MSG = 0xDF, // X10XXXXX
_CANSPI_CONFIG_VALID_STD_MSG = 0xBF, // X01XXXXX
_CANSPI_CONFIG_ALL_VALID_MSG = 0x9F; // X00XXXXX
You may use bitwise AND (&) to form config byte out of these values. For example:
init = _CANSPI_CONFIG_SAMPLE_THRICE &
_CANSPI_CONFIG_PHSEG2_PRG_ON &
_CANSPI_CONFIG_DBL_BUFFER_ON &
_CANSPI_CONFIG_STD_MSG &
_CANSPI_CONFIG_VALID_XTD_MSG &
CANSPIInitialize(1, 1, 3, 3, 1, init); // initialize CANSPI
_CANSPI_CONFIG_LINE_FILTER_OFF;
...

CANSPI_TX_MSG_FLAGS

CANSPI_TX_MSG_FLAGS are flags related to transmission of a CAN message:
const char
_CANSPI_TX_PRIORITY_BITS = 0x03,
_CANSPI_TX_PRIORITY_0 = 0xFC, // XXXXXX00
_CANSPI_TX_PRIORITY_1 = 0xFD, // XXXXXX01
_CANSPI_TX_PRIORITY_2 = 0xFE, // XXXXXX10
_CANSPI_TX_PRIORITY_3 = 0xFF, // XXXXXX11
_CANSPI_TX_FRAME_BIT = 0x08,
_CANSPI_TX_STD_FRAME = 0xFF, // XXXXX1XX
_CANSPI_TX_XTD_FRAME = 0xF7, // XXXXX0XX
_CANSPI_TX_RTR_BIT = 0x40,
_CANSPI_TX_NO_RTR_FRAME = 0xFF, // X1XXXXXX
_CANSPI_TX_RTR_FRAME = 0xBF; // X0XXXXXX
You may use bitwise AND (&) to adjust the appropriate flags. For example:
/* form value to be used as sending message flag : */
send_config = _CANSPI_TX_PRIORITY_0 &
_CANSPI_TX_XTD_FRAME &
_CANSPI_TX_NO_RTR_FRAME;
...
CANSPIWrite(id, data, 1, send_config);

CANSPI_RX_MSG_FLAGS

CANSPI_RX_MSG_FLAGS are flags related to reception of CAN message. If a particular bit is set then corresponding meaning is TRUE or else it will be FALSE.
const char
_CANSPI_RX_FILTER_BITS = 0x07, // Use this to access filter bits
_CANSPI_RX_FILTER_1 = 0x00,
_CANSPI_RX_FILTER_2 = 0x01,
_CANSPI_RX_FILTER_4 = 0x03,
_CANSPI_RX_FILTER_3 = 0x02,
_CANSPI_RX_FILTER_5 = 0x04,
_CANSPI_RX_OVERFLOW = 0x08, // Set if Overflowed else cleared
_CANSPI_RX_FILTER_6 = 0x05,
_CANSPI_RX_INVALID_MSG = 0x10, // Set if invalid else cleared
_CANSPI_RX_XTD_FRAME = 0x20, // Set if XTD message else cleared
_CANSPI_RX_RTR_FRAME = 0x40, // Set if RTR message else cleared
_CANSPI_RX_DBL_BUFFERED = 0x80; // Set if this message was hardware double-buffered
You may use bitwise AND (&) to adjust the appropriate flags. For example:
if (MsgFlag & _CANSPI_RX_OVERFLOW != 0) {
...
// Receiver overflow has occurred.
// We have lost our previous message.
}

CANSPI_MASK

The CANSPI_MASK constants define mask codes. Function CANSPISetMask expects one of these as it's argument:
const char
_CANSPI_MASK_B1 = 0,
_CANSPI_MASK_B2 = 1;


CANSPI_FILTER

The CANSPI_FILTER constants define filter codes. Functions CANSPISetFilter expects one of these as it's argument:
const char
_CANSPI_FILTER_B1_F1 = 0,
_CANSPI_FILTER_B1_F2 = 1,
_CANSPI_FILTER_B2_F2 = 3,
_CANSPI_FILTER_B2_F1 = 2,
_CANSPI_FILTER_B2_F3 = 4,
_CANSPI_FILTER_B2_F4 = 5;

Code Example

This is a simple demonstration of CANSPI Library routines usage. First node initiates the communication with the second node by sending some data to its address. The second node responds by sending back the data incremented by 1. First node then does the same and sends incremented data back to second node, etc.
Code for the first CANSPI node:
unsigned char Can_Init_Flags, Can_Send_Flags, Can_Rcv_Flags; // can flags
unsigned char Rx_Data_Len; // received data length in bytes
char RxTx_Data[8]; // can rx/tx data buffer
char Msg_Rcvd; // reception flag
const long ID_1st = 12111, ID_2nd = 3; // node IDs
long Rx_ID;
// CANSPI module connections
sbit CanSpi_CS at P1_0_bit;
sbit CanSpi_Rst at P1_2_bit;
// End CANSPI module connections
void main() {
Can_Init_Flags = 0; //
Can_Send_Flags = 0; // clear flags
Can_Rcv_Flags = 0; //
Can_Send_Flags = _CANSPI_TX_PRIORITY_0 & // form value to be used
_CANSPI_TX_XTD_FRAME & // with CANSPIWrite
_CANSPI_TX_NO_RTR_FRAME;
Can_Init_Flags = _CANSPI_CONFIG_SAMPLE_THRICE & // Form value to be used
_CANSPI_CONFIG_PHSEG2_PRG_ON & // with CANSPIInit
_CANSPI_CONFIG_XTD_MSG &
_CANSPI_CONFIG_DBL_BUFFER_ON &
_CANSPI_CONFIG_VALID_XTD_MSG;
SPI1_Init(); // initialize SPI1 module
CANSPIInitialize(1,3,3,3,1,Can_Init_Flags); // Initialize external CANSPI module
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,0xFF); // set CONFIGURATION mode
CANSPISetMask(_CANSPI_MASK_B1,-1,_CANSPI_CONFIG_XTD_MSG); // set all mask1 bits to ones
CANSPISetMask(_CANSPI_MASK_B2,-1,_CANSPI_CONFIG_XTD_MSG); // set all mask2 bits to ones
CANSPISetFilter(_CANSPI_FILTER_B2_F4,ID_2nd,_CANSPI_CONFIG_XTD_MSG);// set id of filter B2_F4 to 2nd node ID
CANSPISetOperationMode(_CANSPI_MODE_NORMAL,0xFF); // set NORMAL mode
RxTx_Data[0] = 9; // set initial data to be sent
CANSPIWrite(ID_1st, RxTx_Data, 1, Can_Send_Flags); // send initial message
while(1) { // endless loop
Msg_Rcvd = CANSPIRead(&Rx_ID , RxTx_Data , &Rx_Data_Len, &Can_Rcv_Flags);// receive message
if ((Rx_ID == ID_2nd) && Msg_Rcvd) { // if message received check id
P0 = RxTx_Data[0]; // id correct, output data at PORT0
RxTx_Data[0]++ ; // increment received data
Delay_ms(10);
CANSPIWrite(ID_1st, RxTx_Data, 1, Can_Send_Flags); // send incremented data back
}
}
}
Code for the second CANSPI node:
unsigned char Can_Init_Flags, Can_Send_Flags, Can_Rcv_Flags; // can flags
unsigned char Rx_Data_Len; // received data length in bytes
char RxTx_Data[8]; // can rx/tx data buffer
char Msg_Rcvd; // reception flag
const long ID_1st = 12111, ID_2nd = 3; // node IDs
long Rx_ID;
// CANSPI module connections
sbit CanSpi_CS at P1_0_bit;
sbit CanSpi_Rst at P1_2_bit;
// End CANSPI module connections
void main() {
Can_Init_Flags = 0; //
Can_Send_Flags = 0; // clear flags
Can_Rcv_Flags = 0; //
Can_Send_Flags = _CANSPI_TX_PRIORITY_0 & // form value to be used
_CANSPI_TX_XTD_FRAME & // with CANSPIWrite
_CANSPI_TX_NO_RTR_FRAME;
Can_Init_Flags = _CANSPI_CONFIG_SAMPLE_THRICE & // Form value to be used
_CANSPI_CONFIG_PHSEG2_PRG_ON & // with CANSPIInit
_CANSPI_CONFIG_XTD_MSG &
_CANSPI_CONFIG_DBL_BUFFER_ON &
_CANSPI_CONFIG_VALID_XTD_MSG &
_CANSPI_CONFIG_LINE_FILTER_OFF;
SPI1_Init(); // initialize SPI1 module
CANSPIInitialize(1,3,3,3,1,Can_Init_Flags); // initialize external CANSPI module
CANSPISetOperationMode(_CANSPI_MODE_CONFIG,0xFF); // set CONFIGURATION mode
CANSPISetMask(_CANSPI_MASK_B1,-1,_CANSPI_CONFIG_XTD_MSG); // set all mask1 bits to ones
CANSPISetMask(_CANSPI_MASK_B2,-1,_CANSPI_CONFIG_XTD_MSG); // set all mask2 bits to ones
CANSPISetFilter(_CANSPI_FILTER_B2_F3,ID_1st,_CANSPI_CONFIG_XTD_MSG); // set id of filter B2_F3 to 1st node ID
CANSPISetOperationMode(_CANSPI_MODE_NORMAL,0xFF); // set NORMAL mode
while (1) { // endless loop
Msg_Rcvd = CANSPIRead(&Rx_ID , RxTx_Data , &Rx_Data_Len, &Can_Rcv_Flags); // receive message
if ((Rx_ID == ID_1st) && Msg_Rcvd) { // if message received check id
P0 = RxTx_Data[0]; // id correct, output data at PORT0
RxTx_Data[0]++ ; // increment received data
CANSPIWrite(ID_2nd, RxTx_Data, 1, Can_Send_Flags); // send incremented data back
}
}
}

HW Connection


No comments:

Post a Comment